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Abstract

Algorithmic di�erentiation (AD) allows exact computation of derivatives given
only an implementation of an objective function. Although many AD tools are avail-
able, a proper and e�cient implementation of AD methods is not straightforward.
�e existing tools are o�en too di�erent to allow for a general test suite. In this pa-
per, we compare ��een ways of computing derivatives including eleven automatic
di�erentiation tools implementing various methods and wri�en in various languages
(C++, F#, MATLAB, Julia and Python), two symbolic di�erentiation tools, �nite dif-
ferences, and hand-derived computation.

We look at three objective functions from computer vision and machine learning.
�ese objectives are for the most part simple, in the sense that no iterative loops are
involved, and conditional statements are encapsulated in functions such as abs or
logsumexp. However, it is important for the success of algorithmic di�erentiation
that such ‘simple’ objective functions are handled e�ciently, as so many problems in
computer vision and machine learning are of this form.

Of course, our results depend on programmer skill, and familiarity with the tools.
However, we contend that this paper presents an important datapoint: a skilled pro-
grammer devoting roughly a week to each tool produced the timings we present. We
have made our implementations available as open source to allow the community to
replicate and update these benchmarks.

1 Introduction
Algorithmic di�erentiation (AD) is a set of methods for automatic and exact computa-
tion of derivatives given a de�nition, in source code, of a function to be di�erentiated.
It includes automatic di�erentiation, where derivatives are forward and/or back propa-
gated through the chain rule. �is is possible since even the most complicated functions
are composed of elementary operations and functions such as addition, multiplication,
logarithm, exponential, etc.

Alternative approaches to automatic di�erentiation include symbolic di�erentiation,
�nite di�erences and di�erentiation by hand. Symbolic di�erentiation using symbolic
algebra systems typically has to represent the whole function as a single expression,
which is limited by available memory, meaning it cannot handle larger functions. For
e�cient code generation, it should also include common subexpression elimination.

Finite di�erences (FD) is a numerical method and therefore does not compute exact
derivatives. Note however that for most computer vision an machine learning problems,
this inaccuracy is o�en unimportant [26]. Of more importance is the computational cost:
the asymptotic time complexity is dependent on the number of input variables whereas
the complexity of so called reverse mode of AD is independent of it.

Finally, di�erentiating functions manually by a human is very time consuming and
also error prone, but almost always results in the fastest runtime code.

As mentioned above, AD exploits the chain rule for computing derivatives. �e chain
rule is typically traversed either in the direction from the input variables to the output
variables (forward mode) or the other way around (reverse mode). Asymptotic time com-
plexity of forward mode is dependent on the number of input variables and complexity
of reverse mode on the number of output variables. Hence, a mode should be chosen
based on a function to be di�erentiated. Note that there are also hybrid ways of comput-
ing derivatives using AD which are not precisely forward or reverse mode. For a more
detailed explanation of AD methods, see Griewank and Walther [11] and Baydin et al. [5].

Usually, AD is implemented by operator overloading (OO) or source transformation
(ST). As an example, consider a C++ function working with �oating point variables. An
operator overloading tool requires that the function is wri�en in terms of a templated
type. �en, the tool instantiates the function template with a custom type which stores
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not only a variable but also a value of its derivative. �is custom type overloads all
elementary operations to also update the derivative value. Consequently, the output of
the function includes the �nal value of the derivative. �is corresponds to the forward
mode. Reverse mode is sometimes considered more complicated, but the main idea is
similar. On the other hand, source transformation tools analyze the original function,
somewhat as a compiler would, and output source code for a function which computes the
derivative. Source transformation can potentially output a code computing derivatives
more e�ciently than operator overloading tools but it is usually much more di�cult to
implement as it has to know the syntax of the desired programming language.

Many AD tools exist (see [6] and Tab. 1). Nevertheless, it is not trivial to implement
one properly, especially so that it could be used for complicated objective functions. �e
existing tools are in various languages and implement various AD methods. Hence, most
of the tools are too di�erent to allow for a straightforward implementation of benchmark
suites.

We propose to take three objective functions from machine learning and computer vi-
sion, to benchmark eleven selected AD tools covering various languages and AD methods
(see Tab. 1), two symbolic di�erentiation tools, �nite di�erences and also hand-derived
derivative computation. �e objective functions considered are: log-likelihood of a Gaus-
sian mixture model, bundle adjustment [26], and hand tracking [24]. �ese functions in-
clude features such as sparse Jacobians, matrix expressions, and domain-speci�c special
functions such as logsumexp, de�ned stably as

logsumexp(x : Rn) = log(sum(exp(x−max(x)))) + max(x) (1)

Recently, Siskind and Pearlmu�er [22] presented a benchmark of several AD tools.
�ey show runtimes relative to the runtime of their own tool whereas we give absolute
runtimes as well as runtimes normalized with respect to individual languages (see Sec. 5).
�eir objective functions are simple with a �xed number of input and output variables.
On the other hand, all our problems have varying number of variables. Dürrbaum et
al. [9] benchmarked ADOLC versus symbolic di�erentiation and found signi�cant speed
di�erences, also borne out by our experiments.

We �rst give an overview of the AD tools selected for benchmarking. Next, we brie�y
present how AD is used in machine learning and computer vision followed by a descrip-
tion of objective functions used for benchmarking in this work. �en, we present the
results and �nally give our conclusions, foremost among which is that even with reason-
able care devoted to e�ciency in each of the input languages, the runtimes vary through
four orders of magnitude. While factors other than speed are important, it should always
be kept in mind that for many applications, �nite di�erence computation is su�ciently
accurate, and it is certainly the easiest to use, so any tool, to be valuable, must beat FD
for speed.

1.1 Notation
In this paper, we use the following notation for variables: scalar s or S, vector v, matrix
M, and tensor T. We symbolize a concatenation of multiple column vectorsv1,v2, . . . ,vn
as a matrix V. Similarly, a concatenation of multiple matrices M1,M2, . . . ,Mm as a
tensor M.

Special functions are matrix determinant or scalar absolute value | · |, and Euclidean
norm || · ||. Function logsumexp is always de�ned stably as presented above.

2 Benchmarked Tools
We have chosen several well-known or promising AD tools (see Tab. 1). �e selection
covers various languages and AD approaches as well as symbolic di�erentiation. �e
newest version of all the tools that was available in the period July-August 2015 was
used. In addition, we give results for �nite di�erences and manual, i.e., a hand-derived
optimized implementation.

�e tools that have both forward and reverse mode are called with the one that is
more suitable for the given objective function. Di�sharp in particular runs signi�cantly
slower in its default mode so it is called in its special forward and reverse modes for
�rst-order derivatives.

Tapenade o�ers di�erentiation of both Fortran and clean C code but we use it only
with C. Unfortunately, it does not support C fully and its source transformation occa-
sionally produced non-compiling output, so we had to �x a few errors.

From the chosen tools, we did not benchmark ADiGator because it generated syntac-
tically incorrect code for GMM, clad as it did not have support for arrays, and ADIC2 as
our a�empts to compile it were unsuccessful. Consider that this supports the statement
that it is more di�cult to implement a source transformation than an operator overload-
ing tool.

Adept, ADOL-C and Ceres are all operator overloading C++ tools. �ey all require
a templated objective function as input so that it could be run with their custom types
computing derivatives. Ceres has a straightforward implementation of forward mode
only. ADOL-C implements both forward and reverse modes using so called taping which
is basically a process of storing all calculations involving active variables. Importantly,
the tape can be reused for successive computations assuming that certain conditions hold.



Šrajer, Kukelova, Fitzgibbon A Benchmark of AD Tools 3

Table 1: List of tools. OO: operator overloading, ST: source transformation: F: forward,
R: reverse.

Language Tool Approach Mode
C++ Manual (by hand)
C++ Finite di�erences
C++ Adept [15] OO F, R
C++ ADIC2 [17] ST F, R
C++ ADOL-C [28] OO F, R
C++ Ceres Solver [1] OO F
C++ clad [27] ST via compiler F

C/Fortran Tapenade [14] ST F, R
F# Di�Sharp [5] OO F, R

MATLAB ADiGator [18] ST via OO F
MATLAB ADiMat [7] OO via ST F, R
MATLAB MuPAD [25] Symbolic

Julia ForwardDi�.jl [19] OO F
Python Autograd [16] OO F
Python �eano [4] Symbolic

Adept is based on a similar idea but it makes use of expression templates. �at makes
the taping process e�cient enough so that it can be run for every computation without
incurring any signi�cant slowdown.

MuPAD (called from MATLAB) optimizes code using common subexpression elimi-
nation and compiles it via C++ to MEX. �eano input needs to be wri�en in a modi�ed
Python and is then compiled either into optimized Python or C++. �eano is always ran
in CPU mode to allow a fair comparison since all the tools use only CPU.

3 Automatic Di�erentiation in Computer Vision and
Machine Learning

Problems in computer vision and machine learning are o�en formulated as non-linear
optimization. Some of these problems are neural network training, bundle adjustment,
clustering or tracking, to name a few. Optimization algorithms typically require deriva-
tives in the form of gradients, Jacobians, or Hessians. �erefore, AD methods can be
applied in these �elds. �ey can prove very useful, especially during prototyping, as the
objective function may be changed as o�en as the programmer wishes without pu�ing
any e�ort into derivative-computation implementation and still get exact derivatives.
Nonetheless, AD methods are still not widely known in the machine learning and com-
puter vision community.

In the cases, where the community applies AD or AD-like techniques, specialized
tools are typically employed instead of existing general AD implementations. �is also
motivates our benchmark to see how they compare. �ese specialized tools are Ceres [1],
Autograd [16], and �eano [4], for example. Ceres implements a simple forward mode
AD in C++, Autograd is a reverse mode implementation for Python, and �eano is a
collection of symbolic and AD-like di�erentiation methods using its own syntax based
on Python.

Another related technique, used for training neural networks, is the backpropaga-
tion algorithm, essentially a special case of reverse-mode AD. For a more comprehensive
survey of AD in machine learning, see Baydin et al. [5].

4 Objective Functions
In this section, we present the three objective functions used for benchmarking AD tools.
�e functions are: log-likelihood of a Gaussian mixture model, bundle adjustment, and
hand tracking.

4.1 Objective GMM: Gaussian Mixture Model Fitting
�e Gaussian mixture model can be used in a wide range of applications. Consider clus-
tering, deblurring of images [31] and speech recognition [30] for instance. �e GMM has
likelihood function

p(X;w,M,Σ) =

N∏
i=1

K∑
k=1

wk|2πΣk|−
1
2 exp

(
−1

2
(xi − µk)>Σ−1k (xi − µk)

)

s.t.
K∑

k=1

wk = 1 and Σk is positive-de�nite ∀k ∈ {1, . . . ,K}

(2)

where variables xi ∈ RD are data points, wk ∈ R weights, µk ∈ RD means, and Σk ∈
RD×D covariance matrices. Function inputs X,w,M, and Σ are their concatenations
as explained in Sec. 1.1.
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We parametrize the positive-de�nite covariance matrices by the square roots of their
inverses. We introduce variables qk ∈ RD and lk ∈ R

D(D−1)
2 and functionQ(q, l) which

assembles a D ×D lower triangular matrix in the following way

Q(q, l) =


exp(q1) 0 · · · 0
l1 exp(q2) · · · 0
...

...
. . .

...
lD−1 lD−1+D−2 · · · exp(qD)

 . (3)

from which we assemble Σ−1 = Q(q, l)Q(q, l)>.
Positive weights wk are parameterized by log-parameters αk ∈ R:

wk =
exp(αk)∑K

k′=1 exp(αk′)
. (4)

In addition, we include an Identity-Wishart prior over the covariances

p(Σ) =

K∏
k=1

C(D,m)|Σk|m exp

(
−1

2
trace(Σk)

)
(5)

where variable m is a Wishart prior hyperparameter and C is a function not dependent
on independent variables.

�e goal of GMM inference is to maximise the posterior probability of data given
parameters, or equivalently to minimize the negative log posterior

L(w,M,Σ; X) = − log
(
p(X;w,M,Σ)p(Σ)

)
Discarding function C and simplifying using the described parametrization, the �nal
function to be optimized looks like

L(α,M,Q,L) =

N∑
i=1

logsumexp

([
αk + sum(qk)− 1

2
||Q(qk, lk)(xi − µk)||2

]K
k=1

)
−N logsumexp

(
[αk]

K
k=1

)
(6)

+
1

2

K∑
k=1

(
|| exp (qk)||2 + ||lk||2

)
−m sum(qk)

We benchmark the AD tools on gradient computation of Eq. (6). �e size of the gra-
dient changes with D and K , while α,M,Q and L are independent variables.

Note that it is possible to implement the �rst line of Eq. (6) using large matrix oper-
ations provided that enough memory is available. �is can signi�cantly speed up some
languages and tools (see Sec. 5). �e main idea is to work with all the data at once instead
of using an outer loop over the data. For instance, we can compute

Q(qk, lk)
(
X−

[
µk µk . . . µk

])
(7)

at the cost of O(ND) words of storage.

4.2 Objective BA: Bundle Adjustment
In computer vision, 3D reconstruction is a widely studied problem [23, 3]. Given a visual
input (e.g. images or video) observing the same scene, the goal is to reconstruct a 3D
model of this scene. Even though the creation of 3D models can be a goal on its own, 3D
reconstruction is necessary for a number of other applications such as localization [20],
robot navigation [8], augmented reality or virtual reality [21].

Consider so called sparse 3D reconstruction. In this problem, given only images we
want to �nd 3D coordinates of some points observed in the images together with param-
eters of cameras for the images, i.e., where the cameras were in the world when images
were taken. �at can be done by various approaches but most of them run an optimiza-
tion procedure called bundle adjustment (BA) [26, 1]. �is procedure optimizes simulta-
neously all the parameters, i.e., all 3D point coordinates and parameters of cameras. We
benchmark the AD tools by computing the Jacobian used in BA.

Let us �rst introduce the projection function for one camera and one point. Consider
a weight w ∈ R, a 3D point x ∈ R3 and a camera with parameters p = [r; c; f ;x0;κ] ∈
R11, i.e., rotation, camera center, focal length, principal point and radial distortion. �e
point x can be projected by the camera as

project(p,x) = distort(κ,p2e(rodrigues(r,x− c)))f + x0 (8)

where

distort(κ,u) = u(1 + κ1||u||2 + κ2||u||4) (9)

p2e(x) =
x1:2

x3
(10)

rodrigues(r,x) = x cos θ + (v × x) sin θ + v(v>x)(1− cos θ) (11)

where θ = ||r||,v =
r

||r||
(12)
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�e observed image point is m ∈ R2 and the residual e concatenates its reprojection
error [13] and w’s regularizer

e = [w(m− project(r, c, f,x0,κ,x))>; 1− w2]> (13)

�e Jacobian of the whole system where multiple cameras observe multiple points
has a special form. It has only 15 non-zero entries in every reprojection-error row and
one non-zero in every weight-term row. See Fig. 1 for a visualization. Importantly, every
residual is independent of others. It is thus possible to compute small (3 × 15) dense
Jacobians corresponding to individual residuals by directly di�erentiating the residual
function (see Eq. (13)). �en, it is straightforward to distribute the entries across the
�nal sparse Jacobian. Hence, AD tools are not required to support sparsity in any way in
order to compute the Jacobian of this problem. �is strategy is applied also in the popular
optimizer Ceres, that is quite o�en used to solve BA problem in computer vision [1]. Also
note that because of the sparsity, the width of the Jacobian is not important and time
complexity depends only on the number of observations.

Figure 1: Sparsity pa�ern of the Jacobian for an example instance of bundle adjustment.
�e �rst set of wider blocks corresponds to camera parameters, the middle set to 3D
points, and the last set to weights. Rows have been permuted so the “weights-only” rows
appear a�er all the “reprojection error” rows.

4.3 Objective HT: Hand Tracking
In hand tracking [24], we are given a model of a hand and a stream from a depth sensor.
�e goal is tracking a real hand observed by the depth sensor, i.e., ��ing the model to
the depth information. An application requiring hand tracking is remote control and
interaction [29], for instance.

For benchmark purposes, let us consider only the optimization part of the hand track-
ing problem. We are given the hand model aligned to the previous frame. �e model is
a set of points X ∈ R3×M and their triangulation, i.e., a collection of adjacent trian-
gles, which make up a surface. �e motion of the model is parametrized by the variable
p ∈ R26. �en, we are givenN correspondences between the triangles and measured 3D
points Y ∈ R3×N obtained from the current depth frame. �e variable U ∈ R2×N are
barycentric coordinates de�ning exact spots of correspondence inside the triangles. Ad-
ditionally, we are given weights W ∈ R22×M de�ning which points lie on which parts
of the hand (see the procedure below).

�e variable p contains 3 parameters for global translation, 3 for global rotation
parametrized using angle-axis representation and 4 angles for every �nger.

�e procedure for computing the error for all measurements is based on linear blend
skinning:

1. Use the �nger parameters to assemble 22 transformations T ∈ R4×4×22 corre-
sponding to parts of hand. �is operation �rst assembles individual independent
relative transformations corresponding to joints using the Euler angles approach
and then hierarchically combines them to the absolute transformations T.

2. Transform all model vertices by all transformations and weight by those that are
relevant, i.e.,

Z =

22∑
i=1

Ti

[
x̄i
1 x̄i

2 . . . x̄i
M

]
∈ R4×M , x̄i

j = wi,j

[
xj

1

]
∈ R4 (14)

3. Apply global rotation and translation

V =
[
R t

]
Z ∈ R3×M (15)

Note that we can take 3 × 4 matrix because all Ti are composed of rotation and
translation only and weights for every point sum up to one. �erefore all zj have
the fourth coordinate equal to one.
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Figure 2: Sparsity pa�ern of the Jacobian for an example instance of hand tracking. �e
le� part corresponds to motion parameters and the diagonal part on the right to barycen-
tric coordinates.

4. Having transformed the hand model, �nd the exact correspondence spots inside
the triangles. For q-th measurement corresponding to the triangle (i, j, k):

y′q = uq,1vi + uq,2vj + (1− uq,1 − uq,2)vk (16)

which gives us Y′ ∈ R3×M .

5. Finally, the errors for all points are simply E = Y −Y′.

�e independent variables are p and U. We benchmark the Jacobian computation
which has a special structure. It has a semi-dense mostly unstructured part composed of
columns of p and a sparse part corresponding to U, where every row has two non-zero
entries. See Fig. 2 for a visualization. In contrast to BA (see Sec. 4.2), it is not possible to
compute individual blocks of the Jacobian independently. �erefore, sparsity has to be
exploited di�erently for e�cient Jacobian computation.

One has to create a seed matrix which de�nes the compression, feed it to an AD
tool and decompress the resulting matrix. Having the sparsity pa�ern, it is possible to
compute a seed matrix automatically using ColPack [10], for example. Nevertheless, we
propose to exploit the properties of the HT problem and design the seed matrix manually.
�e sparsity pa�ern of the (le�) semi-dense part of the HT Jacobian can change in every
iteration. �erefore, we propose to treat the le� part as a dense Jacobian in order to avoid
seed matrix computation cost. �e number of columns of the le� part is constant. Hence,
the AD tools will always need the same number of function passes. �e sparsity pa�ern
of the (right) part is of a diagonal structure and does not change. It is straightforward to
create a seed matrix which compresses the pa�ern of the right side into two columns.

5 Experiments
To benchmark the AD tools, we �rst ran pre-processing routines (e.g. source transforma-
tion, symbolic di�erentiation, taping). All of the routines that need to be run only once
for di�erent data are not included in the runtimes that we provide. �is is justi�ed since
a user of AD tools would typically run it only once on the objective before calling the
di�erentiated function many times to optimize parameters.

�e benchmarking is done on random data. �e resulting runtimes are averaged over
1000 runs if one run is less than 5 seconds, over 100 runs if 5-30 seconds and over 10 runs
if 30-120 seconds. Otherwise, the runtimes are not averaged. �e time limit for a single
run is 40k seconds. A single machine with a processor Intel(R) Xeon(R) CPU E5-1620 0
@ 3.60GHz, memory 32GB and OS Windows 10 64-bit was used for all the experiments.

We measure not only derivative-computation runtimes for every di�erentiation ap-
proach but also objective-computation runtimes for every language. Hence, we are able
to show derivative runtimes for every approach relative to objective runtimes. Note that
this measure a�empts to minimize the dependence of results on individual languages.
�roughout this section, relative runtimes refer to absolute derivative-computation run-
times divided by absolute objective-computation runtimes measured in a corresponding
language. Special case are the symbolic di�erentiation tools �eano and MuPAD. For
them, we record runtimes of objective computation which is optimized by their internal
engines.

Note that visualizations and tables with results for absolute derivative-computation
runtimes are provided in the supplementary material.

Experiment: Gaussian Mixture Model (GMM)
Fig. 3 shows gradient-computation runtimes for GMM with 10k data points. Alterna-
tively, see Tab. 2 for a subset of the results. We have noticed that tools Adept and ADOL-C
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Table 2: Absolute runtimes for GMM with 10k data points. �e bullet symbolizes that a
tool crashed and no entry means that a tool did not �nish in the time limit.

# parameters 3.00e+1 3.30e+2 1.20e+3 3.30e+3 1.07e+4 2.15e+4 5.36e+4 4.29e+5

Manual C++ 2.96e−3 1.12e−2 1.04e−1 1.11e−1 3.59e−1 7.90e−1 2.08 2.32e+1
Finite di�erences C++ 6.07e−2 1.58 7.72e+1 1.42e+2 8.64e+2 3.23e+3 2.08e+4
Adept C++ 1.70e−2 9.61e−2 5.12e−1 9.76e−1 3.11 6.24 1.80e+1 •
Adept (split) C++ 2.86e−2 1.65e−1 8.54e−1 1.57 4.15 7.03 2.00e+1 1.48e+2
ADOLC C++ 3.08e−2 8.79e−2 8.84e−1 8.49e−1 1.90 • • •
ADOLC (split) C++ 4.71e−1 8.22e−1 3.58 4.17 1.01e+1 1.97e+1 4.45e+1 8.66e+2
Ceres C++ 5.80e−2 7.85 1.46e+2 8.65e+2 • • • •
Tapenade C 7.21e−3 3.35e−2 2.61e−1 3.68e−1 1.08 2.24 6.29 5.25e+1
Di�Sharp (split) F# 1.81e−1 9.36e−1 8.22 1.14e+1 4.64e+1 1.96e+2 6.13e+2 8.53e+3
ADiMat MATLAB 4.16e+1 4.24e+1 1.36e+3 3.59e+2 4.25e+1 7.75e+1 1.77e+2 1.43e+3
ADiMat (vector) MATLAB 2.53e−1 2.73e−1 1.49 6.77e−1 4.75e−1 7.39e−1 1.50 1.10e+1
MuPAD (split) MATLAB 4.64e−3 3.66e−2 2.38e−1 5.06e−1 • • • •
Julia-F Julia 4.28e−1 1.29e+1 1.53e+2 8.42e+2 1.19e+4
Julia-F (vector) Julia 5.83e−1 1.93e+1 • • • • • •
Autograd Python 5.76e+1 • • • • • • •
Autograd (split) Python 9.07e+1 7.82e+2 3.30e+3 8.22e+3 • • • •
�eano Python 1.11e+1 1.52e+1 2.99e+2 6.53e+1 1.88e+1 4.26e+1 8.00e+1 6.58e+2
�eano (vector) Python 1.82e−2 5.38e−2 8.01e−1 5.64e−1 9.22e−1 2.03 5.03 •

Table 3: Absolute runtimes for GMM with 2.5M data points. �e bullet symbolizes that
a tool crashed and no entry means that a tool did not �nish in the time limit. Only tools
that could compute at least one problem instance are shown.

# parameters 3.00e+1 3.30e+2 1.20e+3 3.30e+3 1.07e+4 2.15e+4 5.36e+4 4.29e+5

Manual C++ 8.43e−1 3.29 2.85e+1 3.01e+1 7.65e+1 3.80e+2 3.89e+2 6.16e+3
Finite di�erences C++ 1.25e+1 3.54e+2 1.76e+4 3.31e+4
Adept C++ 3.61 • • • • • • •
Adept (split) C++ 5.32 3.50e+1 1.66e+2 3.72e+2 7.86e+2 2.31e+3 4.09e+3 3.99e+4
ADOLC (split) C++ 9.83e+1 1.77e+2 7.91e+2 9.88e+2 2.32e+3 4.83e+3 1.04e+4
Ceres C++ 1.59e+1 2.27e+3 3.26e+4
Tapenade C 1.60 8.58 6.68e+1 8.56e+1 • • • •
Tapenade (split) C 3.92 1.33e+1 7.97e+1 1.09e+2 2.68e+2 9.59e+2 1.32e+3 1.59e+4
Di�Sharp (split) F# 4.35e+1 2.44e+2 1.94e+3 3.34e+3 3.19e+4
MuPAD (split) MATLAB 1.45 1.09e+1 • • • • • •
Julia-F Julia 9.86e+1 2.59e+3
Julia-F (vector) Julia 1.03e+3 • • • • • • •
Autograd (split) Python 2.35e+4
�eano Python 3.23e+3 2.79e+3 • • • • • •
�eano (vector) Python 5.48 • • • • • • •

do not handle bigger instances. Di�Sharp and Autograd crash even for smaller instances.
�e biggest instance size (D = 64, K = 200) was taken from Zoran and Weiss [31].
We help out these tools by manually exploiting partial separability by spli�ing the gra-
dient computation into functions f , applied per datapoint, and g, the parts independent
of datapoints

∇L(α,M,Q,L) =

N∑
i=1

∇f(xi;α,M,Q,L) +∇g(α,Q,L) (17)

which is symbolized by (split) in the �gures. �is way, the tools are able to handle even
the larger problem instances even though they require a lot of memory.

Moreover, GMM allows for an opposite approach to (split), a vectorized implemen-
tation (denoted by (vector)), where most necessary computations are done in one huge
matrix multiplication (see Sec. 4.1). We show this (vector) version with languages that
are able to utilize it. Notice how �eano and ADiMat are boosted by (vector).

Note that MuPAD is the only tool having problems with compilation. It could not
compile for larger problem sizes and it could take up to several hours to compile the
others. Next, we point out that Ceres and Julia-ForwardDi� have forward mode only
and as can be seen, not having a reverse mode really puts them in a severe disadvantage,
especially as the problem size grows. �e same holds for �nite di�erences.

�e relative runtimes for most of the tools fall in the range of two orders of magni-
tude. Interestingly, some tools perform very di�erently for di�erent problem sizes. Tak-
ing ADiMat (vector), for instance, one can see that its relative runtime for the smallest
problem size is much higher than for the largest one. We can only reason that it cannot
utilize MATLAB’s strength of matrix operations so much for the smaller data.

Comparing standard and (split) versions of Adept, ADOL-C and Autograd, we observe
a drop in runtime for all these tools when the (split) version is used. We argue that this
is caused by multiple invocations of the taping process instead of just one. �is claim
is supported by the measured runtime di�erence between standard and (split) versions
of ADOL-C and Adept. Both tools are wri�en in C++ and use similar ideas but Adept
employs e�cient expression templates for taping. Hence, multiple invocations of the
taping process do not incur a signi�cant slowdown as opposed to ADOL-C.

We have also tried running the tools with 2.5M data points which is a number re-
ported to be used in [31]. With so many points, no tool could handle the biggest problem
sizes without manual exploitation of partial separability. Implementations utilizing large
matrix operations (denoted by (vector)) did not work at all as they need too much memory
and cannot exploit partial separability by de�nition.



Šrajer, Kukelova, Fitzgibbon A Benchmark of AD Tools 8

102 103 104 105

# parameters

10-3

10-2

10-1

100

101

102

103

104

R
u

n
ti
m

e
 [

s
e

c
o

n
d

s
]
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Figure 3: Absolute runtimes for GMM with 10k data points. Some of the tools were run
with (split) or (vector) implementations (see Sec. 5). �e curve endings emphasized by the
black dots symbolize that the tools crashed on bigger instances and those not emphasized
did not �nish in our time limit. Note that both axes are log-scaled. Best viewed in color.
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Figure 4: Relative runtimes for GMM with 10k data points. Some of the tools were run
with (split) or (vector) implementations (see Sec. 5). �e curve endings emphasized by the
black dots symbolize that the tools crashed on bigger instances and those not emphasized
did not �nish in our time limit. Note that both axes are log-scaled. Best viewed in color.
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Figure 5: Absolute runtimes for GMM with 2.5M data points. Some of the tools were
run with (split) or (vector) implementations (see Sec. 5). �e curve endings emphasized
by the black dots symbolize that the tools crashed on bigger instances and those not
emphasized did not �nish in our time limit. Only tools that could compute at least one
problem instance are shown. Note that both axes are log-scaled. Best viewed in color.
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Experiment: Bundle Adjustment (BA)
Next, we show Jacobian computation runtimes for BA in Fig. 6 and Tab. 4. We have chosen
various problem sizes ranging from 21 cameras, 11k 3D points and 36k observations to
14k cameras, 4M 3D points, 29M observations. �e problem sizes are samples of real-
world dataset sizes [2].

�e more suitable mode for BA is reverse (see Sec. 4.2). Nevertheless, by comparing
Ceres and ADOL-C, for instance, we can deduce that choosing either forward or reverse
mode does not have so large signi�cance in this case. ADiMat and �eano give inferior
absolute runtimes as opposed to GMM with 10k data points, where they could utilize
vectorization in the large matrix multiplication. Nevertheless, their relative runtimes
are comparable to the other tools. Further notice that MuPAD is as good as manual
implementation of the derivative computation. �e reason for that is the use of common
subexpression elimination and compilation into C++.

Table 4: Absolute runtimes for BA. Note that Eigen matrix library [12] was utilized for
implementing hand-derived derivatives. �e bullet symbolizes that a tool crashed and no
entry means that a tool did not �nish in the time limit.

# measurements 3.18e+4 2.04e+5 2.87e+5 5.64e+5 1.09e+6 4.75e+6 9.13e+6 2.90e+7

Manual C++ 1.96e−2 1.32e−1 1.76e−1 3.26e−1 6.32e−1 2.85 5.58 1.62e+1
Finite di�erences C++ 4.25e−2 2.77e−1 3.85e−1 7.66e−1 1.48 6.41 1.27e+1 3.96e+1
Adept C++ 6.79e−2 4.38e−1 6.28e−1 1.21 2.38 1.03e+1 2.03e+1 6.63e+1
ADOLC C++ 8.50e−1 5.25 7.68 1.45e+1 2.99e+1 1.25e+2 2.16e+2 7.09e+2
Ceres C++ 2.26e−1 1.62 2.30 4.63 9.11 4.85e+1 1.12e+2 •
Tapenade C 2.43e−2 1.55e−1 2.18e−1 4.30e−1 8.26e−1 3.67 7.09 2.27e+1
Di�Sharp F# 5.37e−1 3.52 4.79 8.98 1.68e+1 7.32e+1 1.46e+2 4.39e+2
ADiMat MATLAB 5.54e+2 3.60e+3 6.01e+3 1.10e+4
MuPAD MATLAB 2.69e−2 1.20e−1 1.66e−1 3.36e−1 6.25e−1 2.66 5.20 1.65e+1
Julia-F Julia 1.34 9.51 1.22e+1 2.61e+1 5.10e+1 1.77e+2 3.52e+2 1.19e+3
Autograd Python 1.73e+2 1.00e+3 1.48e+3 2.67e+3 5.32e+3 • • •
�eano Python 1.81e+1 1.18e+2 1.64e+2 3.00e+2 5.92e+2 • • •

105 106 107

# measurements

10-2

10-1

100

101

102

103

104

105

R
u
n
ti
m

e
 [
s
e
c
o
n
d
s
]

BA Jacobian Absolute Runtimes

Manual | C++ Eigen

Finite differences | C++

Adept | C++

ADOLC | C++

Ceres | C++

Tapenade | C

DiffSharp | F#

ADiMat | MATLAB

MuPAD | MATLAB

Julia-F | Julia

Autograd | Python

Theano | Python

Figure 6: Absolute runtimes for BA. Note that Eigen matrix library [12] was utilized for
implementing hand-derived derivatives. �e curve endings emphasized by the black dots
symbolize that the tools crashed on bigger instances and those not emphasized did not
�nish in our time limit. Note that both axes are log-scaled. Best viewed in color.
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Figure 7: Relative runtimes for BA. Note that Eigen matrix library [12] was utilized for
implementing hand-derived derivatives. �e curve endings emphasized by the black dots
symbolize that the tools crashed on bigger instances and those not emphasized did not
�nish in our time limit. Note that both axes are log-scaled. Best viewed in color.
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Experiment: Hand Tracking (HT)
For HT, we have chosen a small model size suitable for a real-time application and a larger
one which would be typically run o�ine. �e small instance has 544 points on the hand
model and 192 correspondences whereas the big one has 10k points and 100k correspon-
dences. We give Jacobian-computation runtimes for varying number of correspondences
for the small model in Fig. 9. �e results for the large model are visualized in Fig. 11.

Several tools were not benchmarked on HT. MuPAD had compilation issues. Julia
and Ceres did not allow for use of a custom seed matrix. Tapenade was not benchmarked
because the objective contains a lot of matrix operations which would have to be imple-
mented in clean C. �at is surely possible but consider that Tapenade does not support C
fully and manually �xing the generated errors would require a signi�cant e�ort. Finally,
Autograd was not benchmarked as it implements only reverse mode.

�e objective function in C++ was implemented in two di�erent ways. One is us-
ing the Eigen matrix library [12] and the other using a custom lightweight matrix class
(denoted in the �gures by light). We use the custom class only with Adept because it is
not compatible with Eigen and ADOL-C because Eigen is not optimized for the adouble
class of ADOL-C. As can be seen, ADOL-C gives almost an order of magnitude worse
results for the Eigen implementation than for the custom matrix class in terms of relative
runtime of Jacobian-computation. Further note that �eano’s AD-like mode called R-op
is used for HT. Its standard symbolic mode would not handle sparsity.
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Figure 8: Absolute runtimes for HT with the smaller hand model. Only some tools were
benchmarked (see Sec. 5). �eano did not �nish in our time limit for the largest number
of correspondences. Note that both axes are log-scaled. Best viewed in color.
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Figure 9: Relative runtimes for HT with the smaller hand model. Only some tools were
benchmarked (see Sec. 5). �eano did not �nish in our time limit for the largest number
of correspondences. Note that both axes are log-scaled. Best viewed in color.
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Figure 10: Absolute runtimes for HT with the larger hand model. Only some tools were
benchmarked (see Sec. 5). �eano did not �nish in our time limit for the two largest
numbers of correspondences. Note that both axes are log-scaled. Best viewed in color.
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Figure 11: Relative runtimes for HT with the larger hand model. Only some tools were
benchmarked (see Sec. 5). �eano did not �nish in our time limit for the two largest
numbers of correspondences. Note that both axes are log-scaled. Best viewed in color.
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6 Conclusion
First, we have introduced automatic di�erentiation and chosen several tools for com-
puting derivatives to be benchmarked. Second, we have pointed out the signi�cance of
derivatives in machine learning and computer vision and subsequently described three
real-world objective functions from these areas. �en, we have provided relative run-
times for computing derivatives.

We have seen that the relative runtimes of derivative computation range through
three orders of magnitude. �e relative runtime minimizes the e�ect of a programming
language. Nevertheless, the runtime will still depend on programmer skill, and familiar-
ity with the tools, so we have made open source all our materials1, in order that others
may improve on our e�orts. However, we contend that this paper presents an important
datapoint: a skilled programmer devoting roughly a week to each tool produced the tim-
ings above. For many projects, these will represent typical results achieved before a tool
is selected.

We conclude that there are useful tools in most languages but there is also still some
space for improvement. Availability of various features proves to be crucial for the suc-
cess and e�ciency of algorithmic di�erentiation. Important features for our objectives
include ability to use a custom seed matrix, support of matrix libraries, partial separa-
bility detection, and memory optimizations for big problem instances. Moreover, using
the more suitable mode (forward or reverse) can really make a di�erence, especially for
large problems. �erefore, availability of both modes in the AD tools is an advantage.
Importantly, note that we benchmarked only computation of the �rst-order derivatives
and some tools do not support higher-order derivatives.
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