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1 Introduction

We look at three objectives from machine learning and computer vision, and fifteen ways of computing their derivatives
(including hand-derived and finite differences). These objectives are for the most part simple, in the sense that no
iterative loops are involved, and conditional statements are encapsulated in functions such as abs or logsumexp.
However, it is important for the success of algorithmic differentiation that such “simple” objective functions are
handled efficiently, as so many problems in these fields are of this form.

The objective functions considered are: log-likelihood of a Gaussian mixture model, bundle adjustment, and hand
tracking. These functions include features such as sparse Jacobians, matrix expressions, and domain-specific special
functions such as logsumexp(x: vector), defined stably as log(sum(exp(v - max(v)))) + max(v).

We first describe the objective functions used for benchmarking. Next, we give an overview of the selected AD
tools. Then, we present the results and finally give our conclusions, foremost among which is that even with reasonable
care devoted to efficiency in each of the input languages, the runtimes vary through four orders of magnitude.

Objective GMM: Gaussian Mixture Model Fitting

The Gaussian mixture model with Wishart prior has log-posterior function log (p(x;w,µ,Σ)) =
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where x ∈ IRD×N are data points, w ∈ IRK weights, µ ∈ IRD×K means, Σ ∈ IRD×D×K covariance matrices, m is a
Wishart hyperparameter and C is a function not dependent on independent variables. To integrate the constraints
on weights and covariances into the objective function, we reparametrize the GMM function (1). After simplification,
the final function to be optimized looks like
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where α ∈ IRK corresponds to weights, q ∈ IRD×K and l ∈ IR
d(d−1)

2 ×K to covariance matrices, C ′ does not depend on
independent variables and Q assembles a D ×D lower triangular matrix.

We benchmark the AD tools on gradient computation of Eq. (2). The size of the gradient changes with D and K,
while α,µ, q and l are independent variables.
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Objective BA: Bundle Adjustment

Consider a weight w ∈ IR, a 3D point X ∈ IR3 and a camera with parameters p = [r;C; f ;x0;κ] ∈ IR11, i.e., rotation,
camera center, focal length, principal point and radial distortion. The point X can be projected by the camera as

project(r,C, f,x0,κ,X) = distort(κ,p2e(rodriguez(r,X −C)))f + x0 (3)

distort(κ,x) = x(1 + κ1||x||2 + κ2||x||4) (4)

p2e(X) = X1..2/X3 (5)

rodriguez(r,X) = X cos θ + (v ×X) sin θ + v(vTX)(1− cos θ), θ = ||r||,v =
r

||r||
(6)

The observed image point is m ∈ IR2 and the residual e concatenates its reprojection error and w’s regularizer:

e = [w(m− project(r,C, f,x0,κ,X))>; 1− w2]> (7)

The goal of BA is to optimize 3D points, camera parameters and weights simultaneously in a system with multiple
cameras and points [1, 2]. The Jacobian has only 15 non-zero entries in every reprojection-error row and one non-zero
in every weight-term row. This is typically [2] exploited by computing only small independent Jacobians and then
inserting them into the large sparse one.

Objective HT: Hand Tracking

The hand tracking problem [3] has independent variable p ∈ IR26 parameterizing motion. A hand is modelled by a
set of points X ∈ IR3×M and their triangulation, i.e., the model is a collection of adjacent triangles, which make up
a surface. Then, there are N correspondences between observed data points Y ∈ IR3×N and the triangles. The qth

correspondence has independent variable uq ∈ IR2 defining an exact spot inside a triangle to which Yq corresponds.
The procedure for computing the error for all measurements is the following:

1. Compute Z ∈ IR3×M by transforming X according to p. This includes constructing transformation matrices
(similar approach as Eq. (6)) and multiplying the matrices with the points.

2. For q-th measurement corresponding to the triangle (i, j, k), compute Wq = uq,1Zi +uq,2Zj +(1−uq,1−uq,2)Zk.

3. For q-th measurement, compute error eq = Yq −Wq.

The Jacobian has a dense part composed of columns of p and a sparse part corresponding to u, where every row
has two non-zero entries. AD tools supporting sparsity compute the whole sparse part with only two passes. Several
tools are not run as they do not support dynamic sparsity (in the tested version [2]).

2 Tools

We have chosen several well-known or promising AD tools (see Tab. 1). The selection covers various languages and
AD approaches as well as symbolic differentiation. The newest version of all the tools that was available in the
period July-August 2015 was used. In addition, we give results for finite differences and manual, i.e., a hand-derived
optimized implementation.

From the chosen tools, we did not benchmark clad as it does not have support for arrays, ADiGator because it
generated syntactically incorrect code for GMM and ADIC2 as our attempts to compile it were unsuccessful.

For tools that have both forward and reverse mode, they are called with the one that is more suitable for the
given objective. Diffsharp in particular runs significantly slower in default mode so it is called in its special forward
and reverse modes for first-order derivatives. Tapenade offers differentiation of both clean C and Fortran code but we
use it only with C. Unfortunately, its source transformation occasionally produces non-compiling output, so the user
has to fix a few errors. MuPAD optimizes code using common subexpression elimination and compiles it via C++ to
MEX. Theano is written in a modified Python and compiles either into optimized Python or C++. Theano is always
ran in CPU mode to allow a fair comparison since all the tools use only CPU.

3 Experiments

To benchmark the AD tools, we first ran pre-processing routines (e.g. source transformation, symbolic differentiation,
taping). All of the routines that need to be run only once for different data are not included in the runtimes that we
provide. This is justified since a user of AD tools would typically run it only once on the objective before calling the
differentiated function many times to optimize parameters.

The benchmarking is done on random data. The resulting runtimes are averaged over 1000 runs if one run is less
than 5 seconds, over 100 runs if 5-30 seconds and over 10 runs if 30-120 seconds. Otherwise, the runtimes are not



Language Tool Approach Mode BA HT small HT big

C++ Manual (by hand) 20 1 98
C++ Finite differences 43 18 390
C++ Adept [5] OO F, R 68 30 760
C++ ADIC2 [6] ST F, R • • •
C++ ADOL-C [7] OO F, R 850 23 760
C++ Ceres Solver [2] OO F 230 • •
C++ clad [8] ST via compiler F • • •

C/Fortran Tapenade [9] ST F, R 24 • •
F# DiffSharp [10] OO F, R 540 720 72,000

MATLAB ADiGator [11] ST via OO F • • •
MATLAB ADiMat [12] OO via ST F, R 550,000 310 75,000
MATLAB MuPAD [13] Symbolic 27 • •

Julia ForwardDiff.jl [14] OO F 1,300 • •
Python Autograd [15] OO F 170,000 • •
Python Theano [16] Symbolic 18,000 59,000 timeout

Table 1: List of tools. OO: operator overloading, ST: source transformation: F: forward, R: reverse, •: not run (see
text). For BA and HT, runtimes are shown in milliseconds, to 2 significant digits. Theano’s AD-like R-op mode is
used for HT. Standard symbolic mode would not handle sparsity.

averaged. A single machine with a processor Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz, memory 32GB and OS
Windows 10 64-bit was used for all the experiments.

Fig. 1 shows gradient computation runtimes for GMM. We have noticed that some of the tools do not handle
bigger instances. The biggest instance size (D = 64, K = 200) was taken from [4]. We help out some of the tools by
manually splitting the gradient computation

∇ log(p(x;α,µ, q, l)) =

N∑
i=1

∇f(xi;α,µ, q, l) +∇g(α, q, l) (8)

which is symbolized by (split) in the figures. Moreover, GMM allows for a vectorized implementation (denoted by
(vector)), where most necessary computations are done in one huge matrix multiplication. We show this (vector)
version with languages that are able to utilize it.

Next, Tab. 1 shows runtimes for BA. We have tried running BA on various problem sizes ranging from 21 cameras,
11k 3D points and 36k observations to 14k cameras, 4M 3D points, 29M observations. The runtimes are, as expected
(see above), linearly dependent on the number of observations only. Thus, we show only runtimes for the smallest
problem size.

Tab. 1 also gives results for HT. We show results for a small model suitable for a real-time application and a big
one which would be run offline. The small instance has 544 3D points and 192 correspondences whereas the big one
has 10k 3D points and 100k correspondences.

4 Conclusion

First, we have described three real-world objective functions from areas of machine learning and computer vision.
Second, we have chosen several approaches and tools for computing derivatives to be benchmarked. Then, we have
provided runtimes for computing derivatives.

We have seen that the runtimes of derivative computation range through four orders of magnitude. This is partially
dependent on a programing language. It will also depend on programmer skill, and familiarity with the tools, so we
have made open source all our materials1, in order that others may improve on our efforts. However, we contend that
this paper presents an important datapoint: a skilled programmer devoting roughly a week to each tool produced the
timings above. For many projects, these will represent typical results achieved before a tool is selected.

We conclude that there are useful tools in most languages but there is also still some space for improvement. Avail-
ability of various features proves to be crucial for the success and efficiency of algorithmic differentiation. Important
features for our objectives range from sparsity support (at least manually specified) and support of matrix libraries
to memory optimizations for big problem instances and the option to choose from both forward and reverse mode.
Importantly, note that we benchmarked only computation of the first-order derivatives and some tools do not support
higher-order derivatives.

1https://github.com/awf/autodiff
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GMM Gradient Absolute Runtimes - 10k Data Points

manual | C++

Tapenade | C

ADOLC | C++

ADOLC (split) | C++

Adept | C++

Adept (split) | C++

Theano | Python

Theano (vector) | Python

Ceres | C++

DiffSharp | F#

DiffSharp (split) | F#

Autograd | Python

Autograd (split) | Python

ADiMat | MATLAB

ADiMat (vector) | MATLAB

MuPAD (split) | MATLAB symbolic

Julia-F | Julia

Julia-F (vector) | Julia

Finite differences | C++

Figure 1: Runtimes in seconds for GMM. Some of the tools were run with (split) or (vector) implementations (see
Sec. 3). The black dots emphasize the end of a curve symbolizing that the tools crashed on bigger problem sizes. Note
that both axes are log-scaled. Best viewed in color.
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